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Abstract

We prove that the zeros of the derivatives of any order of a B-spline are increasing functions of its
interior knots. We then prove that if the interior knots of two B-splines interlace, then the zeros of their
derivatives of any order also interlace. The same results are obtained for Chebyshevian B-splines.
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1. Introduction

In 1892, Vladimir Markov established the following lemma, now known as the Markov
interlacing property.

Lemma 1 (Markov[7]). If the zeros of the polynomialp := (• − t1) · · · (• − tn) and the
zeros of the polynomialq := (• − s1) · · · (• − sn) interlace,that is

t1�s1� t2�s2� · · · � tn−1�sn−1� tn�sn,

then the zeros�1� · · · ��n−1 ofp′ and the zeros�1� · · · ��n−1 of q ′ also interlace,that
is

�1��1��2��2� · · · ��n−1��n−1.
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Moreover,if t1 < · · · < tn and if ti < si at least once,then the zeros ofp′ and the zeros of
q ′ strictly interlace,that is

�1 < �1 < �2 < �2 < · · · < �n−1 < �n−1.

This lemma plays a major role in the original proof of the Markov inequality[7] and
in some of its simplifications, e.g. [2,12]. The interlacing property for perfect splines
[1], likewise, is essential in the proof of Markov-type inequalities for oscillating perfect
splines [4].

Bojanov remarked that the Markov interlacing property for polynomials is equivalent to
a certain monotonicity property, namely

Each zero of the derivative of a polynomialp := (•−x1) · · · (•−xn) is a strictly increasing
function of anyxj on the domainx1 < · · · < xn.

He proved [1] this equivalence even for generalized polynomials with respect to a Chebyshev
system (satisfying certain conditions), and then obtained the Markov interlacing property
for generalized polynomials by showing the monotonicity property.

Bojanov’s arguments were somehow similar to the ones used by Vidensky when he gave,
in 1951, the following general lemma.

Lemma 2 (Videnskii[13]). Let f and g be two continuously differentiable functions such
that any non-trivial linear combination of f and g has at most n zeros counting multiplicity.
If the zerost1 < · · · < tn of f and the zeross1 < · · · < sn of g interlace,thenn − 1 zeros
of f ′ andn − 1 zeros ofg′ strictly interlace.

In this paper, we aim at proving an interlacing property for B-splines. More precisely,
we show that if the interior knots of two polynomial B-splines interlace, then the zeros of
their derivatives (of any order) also interlace. In Section2, we show how this can be derived
from what we call the monotonicity property, namely

Each zero ofN(l)
t0,...,tk+1

, 1� l�k − 1, is a strictly increasing function of any interior knot
tj , 1�j�k, on the domaint0 < t1 < · · · < tk < tk+1.

This property is proved in Section 3. Next, we generalize these statements to Chebyshevian
B-splines. To this end, we need various results which are scattered around the literature
and are recalled in Sections 4, 6 and 7. Finally, the proof of the monotonicity property for
Chebyshevian B-splines is presented in Section 8.

Our interest in this problem arose from a conjecture regarding the B-spline basis
condition number formulated by Scherer and Shadrin [11]. Fort = (t0< t1< · · ·
< tk < tk+1), with �t representing the monic polynomial of degreek which
vanishes att1, . . . , tk, they asked if it was possible to find a function�t vanishing

k-fold at t0 andtk+1 and such that the sign pattern of�(l)
t is the same as the sign pattern

of (−1)l�(k−l)
t , 0� l�k. The hope to choose�t as a Chebyshevian B-spline with knots

t0, . . . , tk+1 raised the problem of the monotonicity property. Indeed, the zeros of�(l)
t

should coincide with the zeros of�(k−l)
t and thus should increase with anytj , 1�j�k.
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Let us mention that the technique we use to establish the monotonicity property for
Chebyshevian B-splines is different from the one we use to establish it for polynomial
B-splines, so that the proof of Section3 is redundant. We chose to include it nonetheless
because, to our taste, it is a nice proof and because of the additional information it provides,
namely Lemma 7.

To simplify the discussion, the notation “�” will mean “has the sign of”. We will also
use the notation[[m, n]] := {m,m+ 1, . . . , n} whenm andn are integers.

2. Interlacing property for polynomial B-splines

Let us recall that, fort0� · · · � tk+1, theL∞-normalized B-spline of degreek at t0, . . . ,
tk+1 is defined by

Nt0,...,tk+1(x) := (tk+1 − t0) [t0, . . . , tk+1](• − x)k+,

where the divided difference[t0, . . . , tk+1]f of a functionf is the coefficient of degree
k + 1 of the polynomial of degree at mostk + 1 agreeing withf at the pointst0, . . . , tk+1.
It is well known that, fort := (t0 < · · · < tk+1), the B-splineNt is a function of class

Ck−1 which is positive on(t0, tk+1) and vanishes elsewhere. The derivativeN
(k)
t is constant

on each interval(ti , ti+1), where it has the sign(−1)i . Moreover, forl ∈ [[1, k − 1]], the
functionN(l)

t has exactlyl interior zeros and it changes sign at these zeros.
We intend to prove that these zeros satisfy an interlacing property with respect to the

knots, the first and last knots being fixed, with, say,t0 = 0 andtk+1 = 1. Let us note that
a Vidensky-type argument (where zeros would be allowed to coalesce) is not applicable in
this case. Indeed, for two knot sequencest andt ′, there is a linear combination off := Nt

andg := Nt ′ , namely 1
‖f ‖f − 1

‖g‖g, which has more zeros thanf does.
Our approach consists of deducing the interlacing property from the monotonicity prop-

erty. The latter is formulated as follow.

Theorem 1. For l ∈ [[1, k − 1]], let 0 < s1 < · · · < sl < 1 be the l interior zeros of
N

(l)
t0,...,tk+1

. For eachi ∈ [[1, l]], we have
�si
�tj

> 0, j ∈ [[1, k]].

We note that eachsi is indeed a differentiable function of anytj . This is derived, using

the implicit function theorem, from the fact thatN(l+1)
t0,...,tk+1

(si) �= 0. The proof of Theorem
1 is the object of Section 3. If we assume this result for the moment, we can prove the
interlacing property for polynomial B-splines.

Theorem 2. Let l ∈ [[1, k− 1]]. If the knots0 = t0 < t1 < · · · < tk < tk+1 = 1 interlace
with the knots0 = t ′0 < t ′1 < · · · < t ′k < t ′k+1 = 1, that is

t1� t ′1� t2� t ′2� · · · � tk� t ′k
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and ifti < t ′i at least once,then the interior zeross1< · · · <sl ofN
(l)
t0,...,tk+1

strictly interlace

with the interior zeross′1 < · · · < s′l ofN
(l)

t ′0,...,t ′k+1
, that is

s1 < s′1 < s2 < s′2 < · · · < sl < s′l .

Proof. We proceed by induction onl.
For l = 1, we just have to show thats < s′, wheres is the zero ofN ′

t ands′ is the zero
of N ′

t ′ , the knot sequencest andt ′ satisfying the interlacing conditions. This follows from
Theorem1.

Let us now assume that the result holds up to an integerl − 1, l ∈ [[2, k − 1]], and let us
prove that it holds forl as well.

Let the knot sequencest andt ′ satisfy the interlacing conditions, and lets1 < · · · < sl

ands′1 < · · · < s′l denote the interior zeros ofN(l)
t andN(l)

t ′ , respectively. Theorem 1 yields

si < s′i for all i ∈ [[1, l]]. It remains to show thats′i < si+1 for all i ∈ [[1, l − 1]]. To this
end, let us assume thatsh+1�s′h for someh ∈ [[1, l− 1]] and let us derive a contradiction.

First of all, let us remark that it is enough to consider the case of equalitysh+1 = s′h.
Indeed, ifsh+1 < s′h, we set t(�) = (1−�)t+�t ′, � ∈ [0, 1], so thatt(0) = t andt(1) = t ′.
We also denote the interior zeros ofN

(l)

t(�) by s1(�) < · · · < sl(�). By Theorem 1, the point

sh(�) runs monotonically continuously through the interval[sh, s′h] when� runs through
[0, 1]. As sh+1 ∈ (sh, s

′
h), there exists� ∈ (0, 1) for which sh(�) = sh+1. But thent and

t(�) satisfy the interlacing conditions andsh+1 = sh(�). This is the case of equality. We
are now going to show that it leads to a contradiction.

Let us indeed suppose thatsh+1 = s′h. We set s := sh+1 = s′h and we let 0= z0 <

z1 < · · · < zl−1 < zl = 1 and 0= z′
0 < z′

1 < · · · < z′
l−1 < z′

l = 1 denote the zeros of

N
(l−1)
t andN(l−1)

t ′ , respectively. We know thatsi < zi < si+1 and thats′i < z′
i < s′i+1 for

all i ∈ [[1, l− 1]]. Therefore we have

z1 < · · · < zh < s < z′
h < · · · < z′

l−1.

We also note that, sinces ∈ (zh, zh+1) ands ∈ (z′
h−1, z

′
h), one has

N
(l−1)
t (s)�(−1)h and N

(l−1)
t ′ (s)�(−1)h−1.

Thus we can introduce the function

H := N
(l−1)
t + c N

(l−1)
t ′ , where c := −N

(l−1)
t (s)

N
(l−1)
t ′ (s)

> 0.

By the induction hypothesis, one haszi ∈ (z′
i−1, z

′
i ), so thatH(zi) = c N

(l−1)
t ′ (zi) changes

sign for i ∈ [[1, h]]. This gives rise toh − 1 zeros ofH in (z1, zh). Likewise, one has
z′
i ∈ (zi, zi+1), so thatH(z′

i ) = N
(l−1)
t (z′

i ) changes sign fori ∈ [[h, l − 1]]. This gives
rise tol − h− 1 zeros ofH in (z′

h, z
′
l−1). Counting the double zero ofH at s, the function

H has at leastl interior zeros. Applying Rolle’s theoremk − l + 1 times, we deduce that
H̃ := H(k−l+1) has at leastk + 1 sign changes.
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But H̃ = N
(k)
t + c N

(k)

t ′ is a piecewise constant function. On[t ′i , ti+1], it has the sign

(−1)i , and on[t ′i+1, ti+2], it has the sign(−1)i+1, so that the intermediate value of̃H on
[ti+1, t

′
i+1] does not contribute to the number of sign changes ofH̃ . Only the values of

H̃ on the intervals[t ′0, t1], . . . , [t ′k, tk+1] have a contribution. HencẽH has exactlyk sign
changes. This is a contradiction.

We conclude thats′i < si+1 for all i ∈ [[1, l− 1]], so that the result holds forl.
The inductive proof is now complete.�

3. Monotonicity property for polynomial B-splines

Our proof of the monotonicity property for polynomial B-splines makes an extensive use
of an elegant formula which was given by Meinardus et al.[8, Theorem 5] and which was
expressed in a slightly different way by Chakalov [5] as early as 1938 (see also [3, Formula
(3.4.6)]). For the convenience of the reader, we include a proof which, unlike [8], does not
involve the integral representation of divided differences.

Lemma 3. Let t0 = 0, tk+1 = 1,and lett ∈ [0, 1],e.g.tj � t� tj+1.We have

Nt0,...,tj ,t,tj+1,...,tk+1(x) = x − t

k + 1
N ′
t0,...,tj ,t,tj+1,...,tk+1

(x) + Nt0,...,tk+1(x). (1)

Proof. Let us writet := (t0, . . . , tk+1) andt ′ := (t0, . . . , tj , t, tj+1, . . . , tk+1). We define
polynomialsp, q andr by the facts that

p, of degree�k + 1, interpolates(• − x)k+ at t,

q, of degree�k + 2, interpolates(• − x)k+1+ at t ′,
r, of degree�k + 2, interpolates(• − x)k+ at t ′.

In this way, sincet0 = 0 andtk+1 = 1,

the coefficient of degreek + 1 of p is Nt(x),

the coefficient of degreek + 2 of q is Nt ′(x),

the coefficient of degreek + 2 of r is − 1

k + 1
N ′
t ′(x).

We observe that

(• − x) × r, of degree�k + 3, interpolates(• − x)k+1+ at t ′. (2)

We also remark that the polynomialr − p is of degree at mostk + 2 and vanishes att and
that the polynomial(• − x)× r − q is of degree at mostk + 3 and vanishes att ′. Looking
at the leading coefficients of these polynomials, we obtain

r − p = − 1

k + 1
N ′
t ′(x) × (• − t0) · · · (• − tk+1),

(• − x) × r − q = − 1

k + 1
N ′
t ′(x) × (• − t)(• − t0) · · · (• − tk+1).
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Eliminatingr from these equations, we get

q − (• − x) × p = − 1

k + 1
N ′
t ′(x) × (t − x) × (• − t0) · · · (• − tk+1).

Identifying the terms of degreek + 2 leads to

Nt ′(x) − Nt(x) = x − t

k + 1
N ′
t ′(x),

which is just a rearrangement of (1).�

Remark 4. The trivial observation (2) is specific to the polynomial case. We will later see
how it can be used to simplify the arguments presented in the proof of the monotonicity
property for Chebyshevian B-splines.

The two following formulae are crucial in our approach.

Formulae 5. Using the notations

t := (0 = t0 < · · · < tk+1 = 1), tj := (0 = t0 < · · · < tj = tj < · · · < tk+1 = 1),

we have

k + 1 − l

k + 1
N

(l)

tj
(x) = x − tj

k + 1
N

(l+1)
tj

(x) + N
(l)
t (x), l ∈ [[0, k − 1]], (3)

and

�N(m)
t

�tj
= − 1

k + 1
N

(m+1)
tj

. (4)

Proof. We rewrite (1) fort = tj to obtain

Ntj (x) = x − tj

k + 1
N ′
tj
(x) + Nt(x).

Differentiating the latterl times, we obtain formula (3). Formula (4) is an easy consequence
of the identity �

�tj
[t0, . . . , tk+1] = [t0, . . . , tj , tj , . . . , tk+1]. �

To give a feeling of the arguments involved in the proof of the monotonicity property, we
begin with the simple case of the zero of the first derivative of a B-spline.

Proposition 6. Let s be the interior zero ofN ′
t0,...,tk+1

, k�2.We have

�s
�tj

> 0, j ∈ [[1, k]].
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Proof. DifferentiatingN ′
t (s) = 0 with respect totj , we get

�s
�tj

× N ′′
t (s) +

(
�N ′

t

�tj

)
(s) = 0.

SinceN ′′
t (s) < 0, it is enough to show that

(
�N ′

t

�tj

)
(s) > 0, or, in view of (4), that

N ′′
tj
(s) < 0.

Writing (3) for l = 1 andx = s, we obtain

k

k + 1
N ′
tj
(s) = s − tj

k + 1
N ′′

tj
(s). (5)

Besides, (3) taken forl = 0 andx = s gives

s − tj

k + 1
N ′
tj
(s) = Ntj (s) − Nt(s).

Hence,

(s − tj )
2

k + 1
N ′′

tj
(s) = k

[
Ntj (s) − Nt(s)

]
.

Let � be the interior zero ofN ′
tj

, i.e. the point of maximum ofNtj . We clearly have

N ′′
tj
(�) < 0. Thus, ifs = �, we obtain the desired inequalityN ′′

tj
(s) < 0. We can therefore

assume thats �= �.
In this case, we can also assume thats �= tj . Indeed, ifs = tj , then (5) would give

N ′
tj
(s) = 0, so thats = �.

Consequently, in order to prove thatN ′′
tj
(s)<0, we just have to prove that

[
Ntj (s)−Nt(s)

]
< 0.

From (3) forl = 0 andx = �, one hasNtj (�) = Nt(�), and then

Ntj (s) < Ntj (�) = Nt(�)�Nt(s),

hence the inequality
[
Ntj (s) − Nt(s)

]
< 0 holds. �

A little more work is required in order to adapt these arguments to the case of higher
derivatives. The following lemma is needed.

Lemma 7. Let l ∈ [[2, k − 1]] and let0 < z1 < · · · < zl−1 < 1 be the zeros ofN(l−1)
t .

(1) Let0 < �1 < · · · < �l < 1 denote the zeros ofN(l)

tj
, we have

�1 < z1 < �2 < z2 < · · · < �l−1 < zl−1 < �l .
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(2) Let0 < �1 < · · · < �l−1 < 1 denote the zeros ofN(l−1)
tj

and letr ∈ [[0, l − 1]] be such
that �r < tj < �r+1 (having set�0 := 0 and�l := 1),we have

z1 < �1 < z2 < �2 < · · · < zr < �r
< �r+1 < zr+1 < �r+2 < zr+2 < · · · < zl−2 < �l−1 < zl−1.

In other words,repeating the knottj moves the zeros of the derivatives of the B-spline
towardstj .

Let us note that the second statement has already been obtained in the particular case
l = 2 [8, Theorem 6].

Proof. For the first statement, it is enough to show that there is a zero ofN
(l−1)
t in each

interval(�i ,�i+1), i ∈ [[1, l− 1]]. To this end, we note that (3) forl − 1 andx = �i gives

k + 2 − l

k + 1
N

(l−1)
tj

(�i ) = N
(l−1)
t (�i ).

SinceN(l−1)
tj

(�i )�(−1)i+1, we haveN(l−1)
t (�i )�(−1)i+1, and the result now follows from

the intermediate value theorem.
As for the second statement, we note that (3) forl − 1 andx = �i gives

N
(l−1)
t (�i ) = tj − �i

k + 1
N

(l)

tj
(�i ).

SinceN(l)

tj
(�i )�(−1)i , there is at least one zero ofN

(l−1)
t in each of the intervals(�1, �2), . . . ,

(�r−1, �r ), (�r+1, �r+2), . . . , (�l−2, �l−1). The result is now clear forr = 0 andr = l − 1.

Then, forr ∈ [[1, l−2]], we have tj > �1, so thatN(l−1)
t (�1) = tj−�1

k+1 N
(l)

tj
(�1) < 0. Besides,

we haveN(l−1)
t (�1) = k+2−l

k+1 N
(l−1)
tj

(�1) > 0. Thus there is a zero ofN(l−1)
t in (�1, �1).

Likewise, there is a zero ofN(l−1)
t in (�l−1,�l ). Thel − 1 zeros ofN(l−1)

t which we have
found and localized are simplyz1, . . . , zl . �

It is now time for the main result of this section.

Theorem 1. For l ∈ [[1, k − 1]], let 0 < s1 < · · · < sl < 1 be the l interior zeros of
N

(l)
t0,...,tk+1

. For eachi ∈ [[1, l]], we have
�si
�tj

> 0, j ∈ [[1, k]].

Proof. As the casel = 1 has already been treated, we suppose thatl ∈ [[2, k − 1]].
DifferentiatingN(l)

t (si) = 0 with respect totj , we obtain

�si
�tj

× N
(l+1)
t (si) +

(
�N(l)

t

�tj

)
(si) = 0.
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SinceN(l+1)
t (si)�(−1)i , it is enough to show that

(
�N(l)

t

�tj

)
(si)�(−1)i+1, or, in view of

(4), that

N
(l+1)
tj

(si)�(−1)i .

Writing (3) for l andx = si and forl − 1 andx = si , we obtain

(k + 1 − l)N
(l)

tj
(si) = (si − tj )N

(l+1)
tj

(si),

(si − tj )N
(l)

tj
(si) = (k + 2 − l)N

(l−1)
tj

(si) − (k + 1)N(l−1)
t (si).

Thus,

(si − tj )
2N

(l+1)
tj

(si) = (k + 1 − l)
[
(k + 2 − l)N

(l−1)
tj

(si) − (k + 1)N(l−1)
t (si)

]
.

Let us suppose thatsi = tj . It is then clear thatl �= k − 1, and we can write (3) for

l + 1 andx = si to obtain k−l
k+1N

(l+1)
tj

(si) = N
(l+1)
t (si). As N(l+1)

t (si)�(−1)i , we have the

desired resultN(l+1)
tj

(si)�(−1)i . We can therefore assume thatsi �= tj .

In this case, we can also assume thatsi �= �i . Indeed, ifsi = �i , thenN(l)

tj
(si) = 0, and (3)

for l andx = si would give(si − tj )N
(l+1)
tj

(si) = 0, whereN(l+1)
tj

(si) = N
(l+1)
tj

(�i ) �= 0,

so we would havesi = tj .

As si �= tj , in order to prove thatN(l+1)
tj

(si)�(−1)i , we just have to prove that[
(k + 2 − l)N

(l−1)
tj

(si) − (k + 1)N(l−1)
t (si)

]
�(−1)i .

SinceN(l−1)
t (si)�(−1)i+1, the result is clear ifN(l−1)

tj
(si)�(−1)i . Hence we assume that

N
(l−1)
tj

(si)�(−1)i+1. This implies that si ∈ [�i−1, �i]. Indeed, if for example

si < �i−1, thensi < �i−2, becauseN(l−1)
tj

�(−1)i on (�i−2, �i−1), and Lemma 7 yields

si < zi−1, which is absurd.
Now, noting that (3) forl−1 andx = �i implies(k+2−l)N

(l−1)
tj

(�i ) = (k+1)N(l−1)
t (�i ),

we get

(k + 2 − l)|N(l−1)
tj

(si)| < (k + 2 − l)‖N(l−1)
tj

‖[∞,�i−1,�i ]
= (k + 2 − l)|N(l−1)

tj
(�i )| = (k + 1)|N(l−1)

t (�i )|
� (k + 1)‖N(l−1)

t ‖[∞,zi−1,zi ] = (k + 1)|N(l−1)
t (si)|.

Therefore
[
(k + 2 − l)N

(l−1)
tj

(si) − (k + 1)N(l−1)
t (si)

]
� − N

(l−1)
t (si)�(−1)i . �

4. A reminder on ECT-spaces

To formulate the subsequent results, we have to recall a few facts about extended complete
Chebyshev spaces and to fix the notations. This is the purpose of this section. Its content
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is all very standard, and the reader is referred to[10], for example, should more details be
needed.

An (n + 1)-dimensional subspaceG of Cn(I ), I interval, is said to be an extended
Chebyshev space (ET-space) if any non-zero function inGhas no more thannzeros counting
multiplicity. The spaceG is an ET-space if and only if it admits a basis(g0, . . . , gn) which
is an extended Chebyshev system (ET-system), that is, for any pointst0� · · · � tn in I ,

D

(
g0 . . . gn
t0 . . . tn

)
:=

∣∣∣∣∣∣∣
g
(d0)
0 (t0) . . . g

(d0)
n (t0)

... . . .
...

g
(dn)
0 (tn) . . . g

(dn)
n (tn)

∣∣∣∣∣∣∣ > 0, (6)

the occurrence sequenced of t being defined bydi := max{j : ti−j = · · · = ti}.
The system(g0, . . . , gn) of elements ofCn(I ) is said to be an extended complete Cheby-

shev system (ECT-system) if(g0, . . . , gm) is an ET-system for anym ∈ [[1, n]], and an
(n + 1)-dimensional subspaceG of Cn(I ) is said to be an extended complete Chebyshev
space (ECT-space) if it admits a basis(g0, . . . , gn) which is an ECT-system.

If (g0, . . . , gn) is an ECT-system, given pointst1� · · · � tn in I , there exists a unique
� ∈ span(g0, . . . , gn) whose coordinate ongn is 1 and which satisfies

�(di )(ti) = 0, di = max{j : ti−j = · · · = ti}, i ∈ [[1, n]].
It is denoted�g0,...,gn(•; t1, . . . , tn), and is given by

�g0,...,gn(•; t1, . . . , tn) = (−1)n

∣∣∣∣∣∣∣∣∣
g0 . . . gn−1 gn

g
(d1)
0 (t1) . . . g

(d1)
n−1(t1) g

(d1)
n (t1)

... . . .
...

...

g
(dn)
0 (tn) . . . g

(dn)
n−1(tn) g

(dn)
n (tn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
g
(d1)
0 (t1) . . . g

(d1)
n−1(t1)

... . . .
...

g
(dn)
0 (tn) . . . g

(dn)
n−1(tn)

∣∣∣∣∣∣∣∣
. (7)

According to (6), we easily read the sign pattern of�g0,...,gn(•; t1, . . . , tn).
Given weight functionsw0, . . . , wn such thatwi ∈ Cn−i (I ) andwi > 0 and given a point

t ∈ I , we now introduce generalized powers, following the notations used by Lyche [6]. We
start by defining inductively the functionsIm(•, t) = Im(•, t, w1, . . . , wm), m ∈ [[0, n]],
by

I0(•, t) := 1,

Im(•, t, w1, . . . , wm) :=
∫ •

t

w1(x)Im−1(x, t, w2, . . . , wm) dx.

Using integration by parts, it is easily shown by induction that

Im(x, t) = (−1)mIm(t, x). (8)
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We then setum(•, t, w0, . . . , wm) := w0(•)Im(•, t, w1, . . . , wm), that is

u0(x, t, w0)=w0(x),

u1(x, t, w0, w1)=w0(x)

∫ x

t

w1(x1) dx1,

...

un(x, t, w0, . . . , wn)=w0(x)

∫ x

t

w1(dx1) · · ·
∫ xn−1

t

wn(xn) dxn . . . dx1.

For example,um(x, t,1,1,2, . . . , m) = (x − t)m.
The system(u0(•, t, w0), . . . , un(•, t, w0, . . . , wn)) is an ECT-system, and we write

ECT(w0, . . . , wn) for the space it spans, as it indeed is independent ont . In fact, any
(n + 1)-dimensional ECT-space admits such a representation. In this context, the succes-
sive differentiations are to be replaced by the more appropriate ones,

Lw0 = D

( •
w0

)
, Dw1,w0 = 1

w1
Lw0,

...

Lwn−1,...,w0 = D

( •
wn−1

)
◦ · · · ◦ D

( •
w0

)
, Dwn,...,w0 = 1

wn

Lwn−1,...,w0,

so thatLw0(ECT(w0, . . . , wn)) is an ECT-space, namely it is ECT(w1, . . . , wn).

5. Monotonicity property in ECT-spaces

The Markov interlacing property in ECT-spaces is not new, see e.g.[1]. Here is yet another
proof of it, or rather, of the monotonicity property. It is particularly suited to ECT-spaces
and we present it for the sole reason that we like it.

Let ECT(w0, . . . , wn)be an ECT-space onI , and let us set(u0, . . . , un) := (u0(•, t, w0),

. . . , un(•, t, w0, . . . , wn)) for somet ∈ I . Given t1 < · · · < tn in I , let � stand here for

�w0,...,wn(•; t1, . . . , tn) := �u0,...,un(•; t1, . . . , tn).

We define�i to be the zero ofLw0(�) ∈ ECT(w1, . . . , wn) which belongs to the interval
(ti , ti+1), i ∈ [[1, n− 1]].

Proposition 8. For eachi ∈ [[1, n− 1]], we have

��i
�tj

> 0, j ∈ [[1, n]].
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Proof. Dividing byw0, we can without loss of generality replacew0 by 1 andLw0 by the
usual differentiation. We note that� is proportional to

f :=

∣∣∣∣∣∣∣∣∣
u0 . . . un

u0(t1) . . . un(t1)
... . . .

...

u0(tn) . . . un(tn)

∣∣∣∣∣∣∣∣∣ , thus we have

f ′(�i ) =

∣∣∣∣∣∣∣∣∣
u′

0(�i ) . . . u′
n(�i )

u0(t1) . . . un(t1)
... . . .

...

u0(tn) . . . un(tn)

∣∣∣∣∣∣∣∣∣ = 0. (9)

Differentiatingf ′(�i ) = 0 with respect totj leads to

��i
�tj

× f ′′(�i ) +
(

�f ′

�tj

)
(�i ) = 0.

Note thatf (�i )�(−1)i , so thatf ′′(�i )�(−1)i+1, hence it is enough to show that

(
�f ′

�tj

)
(�i ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u′
0(�i ) u′

1(�i ) . . . u′
n(�i )

... . . . . . .
...

u0(tj−1) u1(tj−1) . . . un(tj−1)

u′
0(tj ) u′

1(tj ) . . . u′
n(tj )

u0(tj+1) u1(tj+1) . . . un(tj+1)
... . . . . . .

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
�(−1)i .

Let us introduce

g :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u′
0(�i ) u′

1(�i ) . . . u′
n(�i )

... . . . . . .
...

u0(tj−1) u1(tj−1) . . . un(tj−1)

u0 u1 . . . un
u0(tj+1) u1(tj+1) . . . un(tj+1)

... . . . . . .
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∈ ECT(w0, . . . , wn),

so that
(

�f ′
�tj

)
(�i )=g′(tj ). We have g(t1)=0, . . . , g(tj−1)=0, g(tj+1)=0, . . . , g(tn) = 0,

and in additiong(tj ) = 0, in view of (9). Thereforeg = c f for some constantc.
Using the fact that(u0, . . . , un) is an ECT-system, interchanging the rows yield
g(�i )�(−1)j . Now, since f (�i )�(−1)i , we obtain c�(−1)i+j . Hence, we get
g′(tj ) = c f ′(tj )�(−1)i+j (−1)j = (−1)i , which concludes the proof.�
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6. Generalized divided differences

Before turning our attention to the zeros of the derivatives of Chebyshevian B-splines,
we need to define these Chebyshevian B-splines. A prerequisite is the introduction of the
generalized divided differences, which is carried out in this section. Proposition11 is of
particular importance for our purpose and seems to be new.

For an (n + 1)-dimensional ECT-space onI , for points t0� · · · � tn in I and for a
differentiable enough functionf , we writePG

t0,...,tn
(f ) for the interpolator off at t0, . . . , tn

in G, i.e. the unique element ofG agreeing withf at t0, . . . , tn.

Definition 9. The divided difference of a functionf at the pointst0, . . . , tn with respect to
the weight functionsw0, . . . , wn is defined (independently ont ∈ I ) by

[
w0 . . . wn

t0 . . . tn

]
f := coordinate ofPECT(w0,...,wn)

t0,...,tn
(f ) onun(•, t, w0, . . . , wn).

Given t = (t0 < · · · < tn), let t\i represent the sequencet from which ti has been
removed, andt\i,j the sequencet from whichti andtj have been removed. The identity

P
ECT(w0,...,wn)
t (f ) = P

ECT(w0,...,wn−1)
t\i (f ) +

[
w0 . . . wn

t0 . . . tn

]
f × �w0,...,wn(•; t\i )

is readily obtained, and provides the recurrence relation for divided differences. This can
be found in[9], expressed a little differently.

Proposition 10. For t0 < · · · < tn in I and0� i < j�n, we define� = �w0,...,wn
t0,...,tn

(i, j) by

�w0,...,wn(•; t\j ) − �w0,...,wn(•; t\i ) = � × �w0,...,wn−1(•; t\i,j ).

The constant� is positive and we have[
w0 . . . wn

t0 . . . tn

]

=

[
w0 . . . . . . . . . . . . wn−1
t0 . . . ti−1 ti+1 . . . tn

]
−
[
w0 . . . . . . . . . . . . wn−1
t0 . . . tj−1 tj+1 . . . tn

]
�

.

Proof. To simplify the notations, we omit to write the weight functionswm. The previous
identity used twice gives

Pt(f )= Pt\i,j (f ) + [
t\j
]
f × �(•; t\i,j ) + [t]f × �(•; t\j )

= Pt\i,j (f ) + [
t\i
]
f × �(•; t\i,j ) + [t]f × �(•; t\i ).
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By subtraction, we get([
t\i
]
f − [

t\j
]
f
)

× �(•; t\i,j )= [t]f ×
(
�(•; t\j ) − �(•; t\i )

)
= [t]f × ��(•; t\i,j ),

so that
[
t
]
f = 1

�

([
t\i
]
f − [

t\j
]
f
)
, which is the required result.

The positiveness of� is obtained by taking the values attj of the functions defining�. �

In the traditional polynomial case, withw0 = 1, w1 = 1, . . . , wn = n, one easily finds
�1,1,2,...,n
t0,...,tn

(i, j) = tj − ti . Hence we recover the usual definition of divided differences.
Finally, the following result is crucial in our further considerations.

Proposition 11. For t0 < · · · < tn in I , we have,for anyj ∈ [[0, n]],
�

�tj

([
w0 . . . wn

t0 . . . tn

])
= �

[
w0 . . . . . . . . . . . . wn+1
t0 . . . tj tj . . . tn

]
,

where

� = �w0,...,wn+1
t0,...,tn

(j) := �′
w0,...,wn+1

(tj ; t)
�w0,...,wn(tj ; t\j )

> 0.

Proof. We omit to write the weight functionswm here as well. Forε small enough, with
t := (t0, . . . , tn) andt(ε) := (t0, . . . , tj + ε, . . . , tn), we have

1

ε

([
t0 . . . tj + ε . . . tn

]− [
t0 . . . tj . . . tn

])
= �

ε

[
t0 . . . tj tj + ε . . . tn

]
,

where�(•; t) − �(•; t(ε)) = � × �(•; t\j ). Thus,

�
ε

= −�(tj ; t(ε))
ε�(tj ; t\j )

−→
ε→0

�′(tj ; t)
�(tj ; t\j )

.

The latter limit is obtained using (7). The conclusion now follows from the fact that the
generalized divided difference depends continuously on the knots, which was shown by
Mühlbach [9]. �

For the polynomial case, a simple calculation gives�1,1,2,...,n+1
t0,...,tn

(j) = 1.

7. Chebyshevian B-splines

We recall some properties of Chebyshevian B-splines that are to play a major role in the
last section. We make the simplifying assumption that eachwm is of classC∞.

The divided difference (note the reversed order of thewm’s)

[
wn+1 . . . w0
t0 . . . tn+1

]
f

depends only onDw0,...,wn+1(f ). Indeed, if Dw0,...,wn+1(f ) = Dw0,...,wn+1(g), then
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f − g ∈ ECT(wn+1, . . . , w1), so that

[
wn+1 . . . w0
t0 . . . tn+1

]
(f − g) = 0. Therefore we

can define a continuous linear functional� onC([t0, tn+1]) such that[
wn+1 . . . w0
t0 . . . tn+1

]
f = �

(
Dw0,...,wn+1(f )

)
.

One can prove that

[
wn+1 . . . w0
t0 . . . tn+1

]
f = Dw0,...,wn+1(f )(t) for somet ∈ [t0, tn+1],

implying that� is a positive linear functional of norm 1 onC([t0, tn+1]). We then expect
the representation[

wn+1 . . . w0
t0 . . . tn+1

]
f =

∫ tn+1

t0

Dw0,...,wn+1(f )(t)M
w0,...,wn
t0,...,tn+1

(t) dt

for someMw0,...,wn
t0,...,tn+1

�0 satisfying
∫ tn+1

t0

M
w0,...,wn
t0,...,tn+1

(t) dt = 1.

This is the Peano representation of the divided difference. The choice

f = u+
n (•, x, wn+1, . . . , w1) :=

{
0 on(−∞, x)

un(•, x, wn+1, . . . , w1) on [x,+∞)

for whichLw1,...,wn+1(f ) = �x , leads to

M
w0,...,wn
t0,...,tn+1

(x) = w0(x) ×
[
wn+1 . . . w0
t0 . . . tn+1

]
u+
n (•, x, wn+1, . . . , w1).

This identity is taken to be the definition of the Chebyshevian B-spline att0, . . . , tn+1 with
respect tow0, . . . , wn, and the Peano representation can now be derived from there. The
B-splineMw0,...,wn

t0,...,tn+1
is positive on(t0, tn+1) and vanishes elsewhere. Fort0 < · · · < tn+1,

it is of classCn−1 and its pieces on each interval(ti , ti+1) are (restrictions of) elements
of ECT(w0, . . . , wn). This explains the reversed order of thewm’s and the use of the
differentiationLw0.

One easily get, with the help of (8),

Lw0

(
M

w0,...,wn
t0,...,tn+1

)
(x)

= −w1(x) ×
[
wn+1 . . . w0
t0 . . . tn+1

]
u+
n−1(•, x, wn+1, . . . , w2). (10)

Then the recurrence relation for divided differences implies the differentiation formula

Lw0

(
N

w0,...,wn
t0,...,tn+1

)
(x)=M

w1,...,wn
t0,...,tn

(x) − M
w1,...,wn
t1,...,tn+1

(x),

whereNw0,...,wn
t0,...,tn+1

:= �wn+1,...,w0
t0,...,tn+1

(0, n + 1)× M
w0,...,wn
t0,...,tn+1

.

Applications of the differentiation formula (l+ 1 times) and of Descartes’ rule of sign
on the one hand, and application of Rolle’s theorem on the other, yields the fact that
Lwl,...,w0

(
M

w0,...,wn
t0,...,tn+1

)
possesses exactlyl + 1 interior zeros, where it changes sign.

Remark 12. Some particular attention should be devoted to the interesting case of the B-
splineMw

t0,...,tn+1
:= M

1,...,1,w
t0,...,tn+1

, which is a function of classCn−1, positive on(t0, tn+1),
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vanishing elsewhere, and such that itsnth (usual) derivative is, on each interval(ti , ti+1), a
multiple ofw with sign(−1)i . Given t= (t0 < · · · < tn+1), with �t denoting the monic
polynomial of degreen vanishing att1, . . . , tn, it would be interesting to know if one can
choosew so that thel zeros of(Mw

t )
(l) coincide with thel zeros of�(n−l)

t . This would
confirm the conjecture of Scherer and Shadrin mentioned in the introduction, and would
in turn provide the bound for the B-spline basis condition number conjectured by de Boor.
Let us note that the cases of small values ofn reveal thatw cannot be chosen independently
on t .

8. Interlacing property for Chebyshevian B-splines

In this section we finally state and prove the monotonicity property and the interlacing
property for Chebyshevian B-splines and the zeros of their appropriate derivatives.

Let us first emphasize two formulae which are essential in our approach.

Formulae 13.

Lwl,...,w0

(
M

w0,...,wn
t0,...,tn+1

)
(x)

= (−1)l+1wl+1(x)

[
wn+1 . . . w0
t0 . . . tn+1

]
u+
n−l−1(•, x, wn+1, . . . , wl+2), (11)

�Mw0,...,wn
t0,...,tn+1

�tj
= −�wn+1,...,w−1

t0,...,tn+1
(j) × Lw−1

(
M

w−1,w0,...,wn
t0,...,tj ,tj ,...,tn+1

)
. (12)

Proof. Formula (11) is obtained in the same way as (10). Formula (12) is obtained from
Proposition 11. �

Let us now establish a preparatory lemma.

Lemma 14. For all n�2, there holds

Property An. For any l ∈ [[0, n − 2]], if s1 < · · · < sl+1 denote the zeros of
Lwl,...,w0

(
M

w0,...,wn
�0,...,�n+1

)
, we have

Lwl,...,w1

(
Mw1,...,wn

�0,...,�n

)
(si) = Lwl,...,w1

(
Mw1,...,wn

�1,...,�n+1

)
(si)�(−1)i+1

or equivalently[
wn+1 . . . w1
�0 . . . �n

]
u+
n−l−1(•, si , wn+1, . . . , wl+2)

=
[
wn+1 . . . w1
�1 . . . �n+1

]
u+
n−l−1(•, si , wn+1, . . . , wl+2)�(−1)i+l+1.

Proof. The equalityLwl,...,w1

(
M

w1,...,wn
�0,...,�n

)
(si) = Lwl,...,w1

(
M

w1,...,wn
�1,...,�n+1

)
(si) is simply a

consequence ofLwl,...,w0

(
M

w0,...,wn
�0,...,�n+1

)
(si) = 0. The other equality is now derived with the

help of (11). Thus only the sign ofLwl,...,w1

(
M

w1,...,wn
�0,...,�n

)
(si) has to be determined.
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Let us note that ifAn−1 holds, then so does the following property.

Property Bn. For anym ∈ [[1, n− 2]], if f is an element of ECT(wn, . . . , w1) agreeing
with u+

m(•, z, wn, . . . , wn−m) at �0, . . . , �n and if &(f ) denotes the coordinate off on
un−1(•, z, wn, . . . , w1), then[

f − u+
m(•, z, wn, . . . , wn−m)

]
|(�i ,�i+1)

�&(f )(−1)n+i .

Indeed, form ∈ [[1, n − 2]], let us consider such a functionf and let us suppose that[
f − u+

m(•, z, wn, . . . , wn−m)
]

has at leastn + 2 zeros counting multiplicity. A repeated
application of Rolle’s theorem implies that

Dwn−m,...,wn

[
f − u+

m(•, z, wn, . . . , wn−m)
] = Dwn−m,...,wn(f ) − u+

0 (•, z)

has at leastn + 2 − m zeros, and then, applying Rolle’s theorem once more, we see
that Lwn−m,...,wn(f ) vanishes at leastn − m times. ButLwn−m,...,wn(f ) is an element
of ECT(wn−m−1, . . . , w1), thereforeLwn−m,...,wn(f ) = 0. The latter implies thatf ∈
ECT(wn, . . . , wn−m) ⊆ ECT(wn, . . . , w2). Sincef agrees withu+

m(•, z, wn, . . . , wn−m)

at �1, . . . , �n, it follows that[
wn . . . w1
�1 . . . �n

]
u+
m(•, z, wn, . . . , wn−m) = 0.

Consequently, according toAn−1, we have Lwn−m−2,...,w0

(
M

w0,...,wn−1
�0,...,�n

)
(z) �= 0, i.e.[

wn . . . w0
�0 . . . �n

]
u+
m(•, z, wn, . . . , wn−m) �= 0.

But this contradicts the fact thatf ∈ ECT(wn, . . . , w1).
We conclude that

[
f − u+

m(•, z, wn, . . . , wn−m)
]

vanishes only at�0, . . . , �n, where it
changes sign. Forx → −∞, one hasf (x) − u+

m(x, z,wn, . . . , wn−m) = f (x)�&(f )

(−1)n−1, hence the sign pattern given inBn.
We now proceed with the proof of the lemma.

Firstly, we remark that the assertion inAn is clear forl = 0. Indeed, ifs is the zero of
Lw0

(
M

w0,...,wn
�0,...,�n+1

)
, thens ∈ (�1, �n), and consequentlyMw1,...,wn

�0,...,�n (s) > 0.
Let us now showAn by induction onn�2.
According to the remark we have just made, the assertionA2 is true.
Let us then suppose thatAn−1 holds for somen�3, and let us prove thatAn holds as

well.
For l ∈ [[1, n− 2]], let

z0 = �0 < z1 < · · · < zl < zl+1 = �n be the zeros ofLwl,...,w1

(
Mw1,...,wn

�0,...,�n

)
,

s1 < · · · < sl+1 be the zeros ofLwl,...,w0

(
Mw0,...,wn

�0,...,�n+1

)
.

We will have shownAn as soon as we prove thatsi ∈ (zi−1, zi), i ∈ [[1, l+ 1]].
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We consider

fi ∈ ECT(wn+1, . . . , w1) agreeing withu+
n−l−1(•, zi, wn+1, . . . , wl+2)

at �1, . . . , �n+1,

gi ∈ ECT(wn+1, . . . , w1) agreeing withu+
n−l−1(•, zi, wn+1, . . . , wl+2)

at �0, . . . , �n.

Let &(fi) denote the coordinate offi onun(•, t, wn+1, . . . , w1).
Let also&(gi) denote the coordinate ofgi on un−1(•, t, wn+1, . . . , w2). In fact, we have
gi ∈ ECT(wn+1, . . . , w2), as the coordinate ofgi on un(•, t, wn+1, . . . , w1) is equal to
zero, in view ofLwl,...,w1

(
M

w1,...,wn
�0,...,�n

)
(zi) = 0. According toAn−1, we have

&(gi) =
[
wn+1 . . . w2
�1 . . . �n

]
u+
n−l−1(•, zi, wn+1, . . . , wl+2)�(−1)i+l , i ∈ [[1, l]].

Let us now remark that

gi − fi = −&(fi) × �wn+1,...,w1(•; �1, . . . , �n).

Therefore,

(gi − fi)(�n+1)= −&(fi) × �wn+1,...,w1(�n+1; �1, . . . , �n)� − &(fi)

= gi(�n+1) − u+
n−l−1(�n+1, zi, wn+1, . . . , wl+2) �︸︷︷︸

Bn

&(gi).

We conclude that&(fi)� − &(gi)�(−1)i+l+1, i ∈ [[1, l]]. In other words,[
wn+1 . . . w1
�1 . . . �n+1

]
u+
n−l−1(•, zi, wn+1, . . . , wl+2)�(−1)i+l+1,

that is

Lwl,...,w1

(
Mw1,...,wn

�1,...,�n+1

)
(zi)�(−1)i+1, i ∈ [[1, l]].

This implies the existence ofri ∈ (zi−1, zi) such that

Lwl,...,w1

(
Mw1,...,wn

�0,...,�n

)
(ri) = Lwl,...,w1

(
Mw1,...,wn

�1,...,�n+1

)
(ri),

i.e.

Lwl,...,w0

(
Mw0,...,wn

�0,...,�n+1

)
(ri) = 0, i ∈ [[2, l]].

Let us also note that

Lwl,...,w1

(
Mw1,...,wn

�1,...,�n+1

)
(z1) > 0 =Lwl,...,w1

(
Mw1,...,wn

�0,...,�n

)
(z1),

Lwl,...,w1

(
Mw1,...,wn

�1,...,�n+1

)
(�1)= 0 <Lwl,...,w1

(
Mw1,...,wn

�0,...,�n

)
(�1),

hence the existence ofr1 ∈ (�1, z1) ⊆ (z0, z1) such that

Lwl,...,w0

(
Mw0,...,wn

�0,...,�n+1

)
(r1) = 0.
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Similarly, we get the existence ofrl+1 ∈ (zl, zl+1) such that

Lwl,...,w0

(
Mw0,...,wn

�0,...,�n+1

)
(rl+1) = 0.

Having foundl + 1 zeros ofLwl,...,w0

(
M

w0,...,wn
�0,...,�n+1

)
, these zeros are justs1, . . . , sl+1. On

account ofsi ∈ (zi−1, zi), we conclude thatAn holds.
Our inductive proof is now complete.�

Remark 15. The observation made in Remark4 was central to our proof of the monotonic-
ity property for polynomial B-splines. It also simplifies the arguments we have just given
here, as follow.

Proof of Lemma 14 for polynomial B-splines. Let si be theith zero ofM(l+1)
�0,...,�n+1. Then

the polynomialp interpolating(• − si)
n−l−1+ at �0, . . . , �n+1 is of degreen, notn + 1. Its

leading coefficient isM(l)
�1,...,�n+1(si). As in (2), the polynomial(•− si)×p, of degreen+1,

interpolates(• − si)
n−l+ at�0, . . . , �n+1. Its leading coefficient isM(l)

�0,...,�n+1(si) and is also
the leading coefficient ofp. Therefore, one has

M(l)
�1,...,�n+1

(si) = M(l)
�0,...,�n+1

(si)�(−1)i+1. �

We are now ready to establish the monotonicity property for Chebyshevian B-splines.

Theorem 3. For l ∈ [[0, k − 2]], let s1 < · · · < sl+1 be the(l + 1) interior zeros of
Lwl,...,w0

(
M

w0,...,wk
t0,...,tk+1

)
. For eachi ∈ [[1, l+ 1]], we have

�si
�tj

> 0, j ∈ [[1, k]].

Proof. DifferentiatingDwl+1,...,w0

(
M

w0,...,wk
t0,...,tk+1

)
(si) = 0 with respect totj , we obtain

�si
�tj

× Lwl+1,...,w0

(
M

w0,...,wk
t0,...,tk+1

)
(si) + �Dwl+1,...,w0

(
M

w0,...,wk
t0,...,tk+1

)
�tj

(si) = 0.

SinceLwl+1,...,w0

(
M

w0,...,wk
t0,...,tk+1

)
(si)�(−1)i , it is enough to show that

�Dwl+1,...,w0

(
M

w0,...,wk
t0,...,tk+1

)
�tj

(si) = Dwl+1,...,w0

(
�Mw0,...,wk

t0,...,tk+1

�tj

)
(si)�(−1)i+1

or, in view of (12) and (11), that[
wk+1 . . . . . . . . . w0 w−1
t0 . . . tj tj . . . tk+1

]
u+
k−l−1(•, si , wk+1, . . . , wl+2)�(−1)i+l .
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We consider

f ∈ ECT(wk+1, . . . , w−1) agreeing withu+
k−l−1(•, si , wk+1, . . . , wl+2)

at t0, . . . , tj , tj , . . . , tk+1,

g ∈ ECT(wk+1, . . . , w0) agreeing withu+
k−l−1(•, si , wk+1, . . . , wl+2)

at t0, . . . , tk+1.

Let &(f ) denote the coordinate off onuk+2(•, t, wk+1, . . . , w−1). We need to show that

&(f )�(−1)i+l .

Let also &(g) denote the coordinate ofg on uk(•, t, wk+1, . . . , w1). In fact, we have
g ∈ ECT(wk+1, . . . , w1), which is a consequence ofLwl,...,w0

(
M

w0,...,wk
t0,...,tk+1

)
(si) = 0. Ac-

cording toAk, we have

&(g) =
[
wk+1 . . . w1
t1 . . . tk+1

]
u+
k−l−1(•, si , wk+1, . . . , wl+2)�(−1)i+l+1.

Let us now remark that

f − g = &(f ) × �wk+1,...,w−1(•; t0, . . . , tk+1).

Therefore,

f ′(tj ) − g′(tj )= &(f ) × �′
wk+1,...,w−1

(tj ; t0, . . . , tk+1)�&(f )(−1)k+1+j

= − (g − u+
k−l−1(•, si , wk+1, . . . , wl+2)

)′
(tj ) �︸︷︷︸

Bk+1

&(g)(−1)k+j .

We conclude that&(f )� − &(g)�(−1)i+l . �

The interlacing property for Chebyshevian B-splines is deduced from the monotonicity
property in exactly the same way as in Section2. Its proof is therefore omitted.

Theorem 4. Let l ∈ [[0, k − 2]]. If the knots0 = t0 < t1 < · · · < tk < tk+1 = 1 interlace
with the knots0 = t ′0 < t ′1 < · · · < t ′k < t ′k+1 = 1, that is

t1� t ′1� t2� t ′2� · · · � tk� t ′k,

and if ti < t ′i at least once,then the interior zeross1 < · · · < sl+1 ofLwl,...,w0

(
M

w0,...,wk
t0,...,tk+1

)
strictly interlace with the interior zeross′1 < · · · < s′l+1 ofLwl,...,w0

(
M

w0,...,wk

t ′0,...,t ′k+1

)
, that is

s1 < s′1 < s2 < s′2 < · · · < sl+1 < s′l+1.

Acknowledgments

I am grateful to Dr A. Shadrin who suggested this problem to me and made many helpful
criticisms on the first draft of this paper.



S. Foucart / Journal of Approximation Theory 135 (2005) 1–21 21

References

[1] B. Bojanov, Markov interlacing property for perfect splines, J. Approx. Theory 100 (1999) 183–201.
[2] B. Bojanov, Markov-type inequalities for polynomials and splines, in: C.K. Chui, L.L. Schumaker, J. Stöckler

(Eds.), Approximation Theory, X: Abstract and Classical Analysis, Vanderbilt University Press, 2002,
pp. 31–90.

[3] B. Bojanov, H. Hakopian, A. Sahakian, Spline Functions and Multivariate Interpolations, Kluwer Academic
Publishers, Dordrecht, MA, 1993.

[4] B. Bojanov, N. Naidenov, Exact Markov-type inequalities for oscillating perfect splines, Constr. Approx. 18
(2002) 37–59.

[5] L.Ts. Chakaloff, On a certain presentation of the Newton divided differences in interpolation theory and its
applications, An. Univ. Sofia Fiz. Mat. Facultet 34 (1938) 353–405 (in Bulgarian).

[6] T. Lyche, A recurrence relation for Chebyshevian B-splines, Constr. Approx. 1 (1985) 155–173.
[7] V. Markov, On Functions Which Deviate Least from Zero in a given Interval, St-Petersburg, 1892 (in Russian).
[8] G. Meinardus, H. ter Morsche, G. Walz, On the Chebyshev norm of polynomial B-spline, J. Approx. Theory

82 (1995) 99–122.
[9] G. Mühlbach, A recurrence formula for generalized divided differences with respect to ECT-systems, Numer.

Algorithms 22 (1973) 317–326.
[10] G. Nürnberger, Approximation by Spline Functions, Springer, Berlin, 1989.
[11] K. Scherer, A. Shadrin, New upper bound for the B-spline basis condition number, II: a proof of de Boor’s

2k-conjecture, J. Approx. Theory 99 (1999) 217–229.
[12] A. Shadrin, Interpolation with Lagrange polynomials: a simple proof of Markov inequality and some of its

generalizations, Approx. Theory Appl. 8 (3) (1992) 51–61.
[13] V.S. Videnskii, On estimates of derivatives of a polynomial, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951)

401–420 (in Russian).


