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Abstract

We prove that the zeros of the derivatives of any order of a B-spline are increasing functions of its
interior knots. We then prove that if the interior knots of two B-splines interlace, then the zeros of their
derivatives of any order also interlace. The same results are obtained for Chebyshevian B-splines.
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1. Introduction

In 1892, Vladimir Markov established the following lemma, now known as the Markov
interlacing property.

Lemma 1 (Markov[7]). If the zeros of the polynomiagl := (e — #1) - - (¢ — #,) and the
zeros of the polynomial := (e — 51) - - - (¢ — s,,) interlace,that is

NI - K1 <K$H-1<1 <SS,

then the zeros; < - - - <t,,_1 of p’ and the zerog; < - -- <o,_1 0f ¢’ also interlacethat
is

T1K01<T2K02< - ST -1<0y-1.
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Moreover,if 11 < --- < 1, and if;; < s; at least oncethen the zeros gf’ and the zeros of
q’ strictly interlace,that is

T1<01<T2<02<-+<Tp 1<0p_1.

This lemma plays a major role in the original proof of the Markov inequdiityand
in some of its simplifications, e.g. [2,12]. The interlacing property for perfect splines
[1], likewise, is essential in the proof of Markov-type inequalities for oscillating perfect
splines [4].

Bojanov remarked that the Markov interlacing property for polynomials is equivalent to
a certain monotonicity property, namely

Each zero of the derivative of a polynomjal= (e — x1) - - - (e — x;,) iS @ Strictly increasing
function of anyr; on the domain < - -+ < x,.

He proved [1] this equivalence even for generalized polynomials with respect to a Chebyshev
system (satisfying certain conditions), and then obtained the Markov interlacing property
for generalized polynomials by showing the monotonicity property.

Bojanov’s arguments were somehow similar to the ones used by Vidensky when he gave,
in 1951, the following general lemma.

Lemma 2 (Videnskii[13]). Let f and g be two continuously differentiable functions such
that any non-trivial linear combination of f and g has at most n zeros counting multiplicity.
If the zerog1 < --- < t, of f and the zeros; < --- < s, of g interlace thenn — 1 zeros

of f/andn — 1 zeros ofg’ strictly interlace.

In this paper, we aim at proving an interlacing property for B-splines. More precisely,
we show that if the interior knots of two polynomial B-splines interlace, then the zeros of
their derivatives (of any order) also interlace. In Secfowe show how this can be derived
from what we call the monotonicity property, namely

Each zero ofN,((f’)__”,M, 1<I<k — 1,is a strictly increasing function of any interior knot
tj, 1< j<k,onthedomaing < t; < -+ <t < tgy1.

This property is proved in Section 3. Next, we generalize these statements to Chebyshevian
B-splines. To this end, we need various results which are scattered around the literature
and are recalled in Sections 4, 6 and 7. Finally, the proof of the monotonicity property for
Chebyshevian B-splines is presented in Section 8.

Our interest in this problem arose from a conjecture regarding the B-spline basis
condition number formulated by Scherer and Shadrin [11]. Foe= (o<1 < ---
<t <trs1), With o, representing the monic polynomial of degrée which
vanishes aty, ..., %, they asked if it was possible to find a functié® vanishing

k-fold at#g and#+1 and such that the sign pattern @f) is the same as the sign pattern
of (—1)’w£k’l), 0<I<k. The hope to choos®, as a Chebyshevian B-spline with knots
fo, ..., tr+1 raised the problem of the monotonicity property. Indeed, the zerdégbf
should coincide with the zeros ofzk_l) and thus should increase with any 1< j <k.
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Let us mention that the technique we use to establish the monotonicity property for
Chebyshevian B-splines is different from the one we use to establish it for polynomial
B-splines, so that the proof of Secti@ns redundant. We chose to include it nonetheless
because, to our taste, it is a nice proof and because of the additional information it provides,
namely Lemma 7.

To simplify the discussion, the notatior~" will mean “has the sign of”. We will also
use the notatiofim, n]] := {m, m + 1, ..., n} whenm andn are integers.

2. Interlacing property for polynomial B-splines

Let us recall that, forg < - - - <t+1, the Lo,-normalized B-spline of degrdeatry, . . .,
tr+1 1s defined by

. k
Nig,..tps1(X) == (tk41 — 10) [t0s - - -, k2] (e — X)7,

where the divided differenchgy, ..., f+1]f of a function f is the coefficient of degree
k + 1 of the polynomial of degree at most+ 1 agreeing withf at the pointso, . .., tx+1.
It is well known that, fort := (fo < --- < t+1), the B-splinen; is a function of class
Cc*~1which is positive onrg, tx+1) and vanishes elsewhere. The derivaﬁxfé) is constant
on each intervalz;, ;1 1), where it has the sigo—1)'. Moreover, forl e [1, k — 1], the
function N,(’) has exactly interior zeros and it changes sign at these zeros.

We intend to prove that these zeros satisfy an interlacing property with respect to the
knots, the first and last knots being fixed, with, sgy= 0 ands.1 = 1. Let us note that
a Vidensky-type argument (where zeros would be allowed to coalesce) is not applicable in
this case. Indeed, for two knot sequencasdt there is a linear combination ¢f := N,
andg := Ny, namely 18 which has more zeros thghdoes.

Our approach con3|sts of Jeducmg the interlacing property from the monotonicity prop-
erty. The latter is formulated as follow.

Theorem 1. Forl € [[1,k— 1], let0 < s1 < --- < 55 < 1 be the | interior zeros of

N,(é,)wtm. For eachi € [1, /], we have
Os;:
o0, jelL k.
atj

We note that eack is indeed a differentiable function of amy. This is derived, using

the implicit function theorem, from the fact thm;(”ltk ,(si) # 0. The proof of Theorem
1 is the object of Section 3. If we assume this result for the moment, we can prove the
interlacing property for polynomial B-splines.

Theorem 2. Letl € [1,k— 1]. IftheknotsD =19 <11 < --- < 1 < tx41 = 1linterlace
withthe knot = 15 <1} <--- < <1, = 1, thatis

n<n << < <n sy



4 S. Foucart / Journal of Approximation Theory 135 (2005) 1-21

andifz; < 1/ atleastoncethenthe interior zeros; < - - - < ofN,(é,)wtk+1 strictly interlace
with the interior zerog] < - -- < s/ of Nl(,l)
0

,,,,,

S1<S]<S2<Sp<---<s <S5

Proof. We proceed by induction an

For/ = 1, we just have to show that< s, wheres is the zero ofN; ands’ is the zero
of N, the knot sequencesand:’ satisfying the interlacing conditions. This follows from
Theoremi.

Let us now assume that the result holds up to an integet, ! € [[2, k — 1]], and let us
prove that it holds fof as well.

Let the knot sequencesand:’ satisfy the interlacing conditions, and kgt< --- < s
ands] < --- < s; denote the interior zeros a)tt(l) andN[(,l), respectively. Theorem 1 yields
si < s/ foralli e [[1,1]. It remains to show that < s;,1 foralli € [1,/— 1]. To this
end, let us assume that, 1 <s; for somen € [1,/— 1] and let us derive a contradiction.

First of all, let us remark that it is enough to consider the case of equglity = s,,.
Indeed, ifs;11 < 55, wesetfl) = (1—-A)t+4t', 4 € [0, 1], sothat(0) =z andz(1) = ¢'.
We also denote the interior zerosM)‘g) bysi(4) < --- < s;(A). By Theorem 1, the point
s, (4) runs monotonically continuously through the interisl, s;l] when /A runs through
[0, 1]. AS 5,41 € (s, 57,), there existsl € (0, 1) for whichs;, (1) = s;41. But thenz and
t(/) satisfy the interlacing conditions ang,1 = s,(1). This is the case of equality. We
are now going to show that it leads to a contradiction.

Let us indeed suppose thgt;; = s;,. We set s:= s,41 = 5, and we let 0= zp <
i1 <--<z-1<z=1and0=z; <zj <--- <z_; <z = 1denote the zeros of

Ngl_l) andNt(,l_l), respectively. We know that < z; < s; 1 and thats! < z; < s;+1 for
alli € [1,1— 1]. Therefore we have

<<z <s<z<-<Z_j

We also note that, sincec (z4, zn+1) ands € (z,_4, zj,), one has
NP ()~ (-1 and NL(,’*l)(s)m(—l)h—l.

Thus we can introduce the function

(-1
H:=N'"P4cN!™  where ¢:= —% >
- - NL’ (s)

By the induction hypothesis, one hase (z!_,, z}), so thatH (z;) = ¢ Nt(,l_l)(z,») changes
sign fori e [[1, h]l. This gives rise tdh — 1 zeros ofH in (z1, z;). Likewise, one has
7, € (zi,zi+1), SO thatH (z)) = N}’*”(z;) changes sign foi € [k,] — 1]. This gives
rise tol — h — 1 zeros ofH in (z,, z;_4). Counting the double zero @& ats, the function
H has at least interior zeros. Applying Rolle’s theorein— / + 1 times, we deduce that
H := H*+D has at least + 1 sign changes.
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But H = N(k) + cNt(,k) is a piecewise constant function. @m, 7;;1], it has the sign
(=1), and on[tl+1, ti+2], it has the sign(— 1)+1, so that the intermediate value Hf on
[t,+1, z+l] does not contribute to the number of sign changeHoOnIy the values of

H on the intervalgz, 111, . . ., [#;, ir+1] have a contribution. HencH has exactlyk sign
changes. Thisis a contradlctlon

We conclude that, < s;11 foralli € [1,/— 1], so that the result holds fér
The inductive proof is now complete.(]

3. Monotonicity property for polynomial B-splines

Our proof of the monotonicity property for polynomial B-splines makes an extensive use
of an elegant formula which was given by Meinardus ef&lTheorem 5] and which was
expressed in a slightly different way by Chakalov [5] as early as 1938 (see also [3, Formula
(3.4.6)]). For the convenience of the reader, we include a proof which, unlike [8], does not
involve the integral representation of divided differences.

Lemma 3. Letsp = 0,11 = 1,and letr € [0, 1], e.9.1; <t <tj41. We have

iy () + Nig..o.p00 (X)- @)

NIO,...,tjv’*’./-#l ,,,,, fk+1(x) = _k+l 10y ljs sl j4 1y Tkt 1

Proof. Letus writer := (to, ..., fx41) andt’ := (to, ..., 1,1, 1j41, ..., ik+1). We define
polynomialsp, ¢ andr by the facts that
: k
p, of degree<k + 1, interpolatege — x)’,  att,
g, of degree<k + 2, interpolatege — x)~"?
r, of degree<k + 2, interpolateqe — x)+ att’.

att’,

In this way, sinceg = 0 andy1 = 1,

the coefficient of degreke+ 1 of p is N, (x),
the coefficient of degreke+ 2 ofg is Ny (x),

. . 1
the coefficient of degreke+ 2 ofris — e lN,, (x).
We observe that
(e — x) x r, Of degree<k + 3, interpolatege — x)’fﬁl ate’. (2)

We also remark that the polynomial- p is of degree at mogt + 2 and vanishes atand
that the polynomiale — x) x r — ¢ is of degree at mogt + 3 and vanishes at. Looking
at the leading coefficients of these polynomials, we obtain

r —Pz—k—llN (x) X (e —10) -+ (0 — Iy+1),

1
(-—X)Xr—q——mN (x) X (e —1)(e —10) - -+ (o — I41).
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Eliminatingr from these equations, we get

g—(o—=x) X p=——2N,(x) X (t =x) X (o= 10) -+~ (s — ).

k+1
Identifying the terms of degrde+ 2 leads to

Ny (x) — Ni(x) = N/ (x),
which is just a rearrangement of (1)
Remark 4. The trivial observation (2) is specific to the polynomial case. We will later see
how it can be used to simplify the arguments presented in the proof of the monotonicity
property for Chebyshevian B-splines.
The two following formulae are crucial in our approach.

Formulae 5. Using the notations

:(O:to<~--<tk+1=1),£j =0=n<---<tj=tj<--<tfyz1=1),

we have
k+1—1 X —t;
o M= NP @ N 0, o k-1, (3)
and
aN(m) 1
L _ Nt(;'l+l). (4)
atj k+1 ¢

Proof. We rewrite (1) forr = ¢; to obtain

NGy = 2y N
LJ(X)— ] Lj(-x)—"_ 1 (x).

Differentiating the latter times, we obtain formula (3). Formula (4) is an easy consequence
of the |dent|ty [to, cootpl =T, oty t, o kgl O

To give a feeling of the arguments involved in the proof of the monotonicity property, we
begin with the simple case of the zero of the first derivative of a B-spline.

Proposition 6. Let s be the interior zero af/ k>2.We have

10,51k 41"

& o j e[, k.
alj
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Proof. DifferentiatingN£ (s) = O with respect ta;, we get

0s N” 5N,/
6_tj x N, (s) + 6tj (s) =
SlnceN”(s) < 0, itis enough to show the( N’) (s) > 0, or, in view of @), that

N” (s) <O.

Writing (3) for/ = 1 andx = s, we obtain

“ZU N o). )

N ® =%

k+1

Besides, (3) taken fdr= 0 andx = s gives

2+1N’ () = Nyj(s) = Ni(s).
Hence,
(s — ) //

Let ¢ be the interior zero oW/ , I.e. the point of maximum ofV,;. We clearly have
N” (6) < 0. Thus, ifs = o, we obtaln the desired mequalmj// (s) < 0. We can therefore

assume that # o.
In this case, we can also assume thag ¢;. Indeed, ifs = ¢;, then (5) would give
N/;(s) = 0, so thaty = o.

Consequently, in order to prove trmgj (s)<0, we just have to prove thEWU- (s)—NL(s)]

< 0.
From (3) for/ = 0 andx = g, one hasV,; (¢) = N,(0), and then

Nyi(s) < Nyj(0) = N (0) <N (s),
hence the inequality, ; (s) — N;(s)] < 0 holds. O

A little more work is required in order to adapt these arguments to the case of higher
derivatives. The following lemma is needed.

Lemma 7. Let! € [2,k — 1Jand let0 < z1 < --- < z7_1 < 1 be the zeros cw,fl_l).
(1) LetO < g1 < --- < g7 < 1denote the zeros wfj.), we have

01 <21 <02<Z72<:"<0]-1<Z-1<O0].
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(2) Let0 < {1 < --- < {;_1 < 1 denote the zeros (Nl(f._l) and letr € [0,/ — 1] be such
that{, <t; < (.1 (having sety :=0and{(; := 1), we have
<l <n2<i<-<z<{
<Gu<zu1<l2<zi2<-<z-—2<{_1<z-1

In other words,repeating the knot; moves the zeros of the derivatives of the B-spline
towardst;.

Let us note that the second statement has already been obtained in the particular case
[ = 2[8, Theorem 6].

Proof. For the first statement, it is enough to show that there is a ze:‘qflaf” in each
interval (g;, 0,+1), 1 € [1,1 — 1]. To this end, we note that (3) fér— 1 andx = g; gives

k+2-1 -1 (=)
ﬁNﬂ (gi)) =N, “(0i).

SinceNt(f._l)(a,-)m(—l)"“, we have 1)?"“(0,-)4—1)”{ and the result now follows from
the intermediate value theorem.
As for the second statement, we note that (3 ferl andx = {; gives

-G

-1 I
NP =+ — L IND ).

SinceNt(f)(Ci)m(—l)i,there isatleastone zeroNf’l) ineachoftheinterval€4, (), ...,
& 1.0, 1. Gu2)s oo s (G22. §—1)- The result is now clear for = 0 andr =1 — 1.
Then, forr € [1,1—-2], we have > (4, s0 thawi(l’l)(él) ’;{ﬁlN(’)(Cl) < 0. Besides,
we haveNL(’_l)(al) = %N(“D(a ) > 0. Thus there is a zero 'Y in (a1, (7).
Likewise, there is a zero dV(l )in (Cl 1,07). Thel — 1 zeros ofN(l D which we have
found and localized are simply, ..., z. O

It is now time for the main result of this section.

Theorem 1. For ! € [1,k— 1], let0 < s1 < --- < 55 < 1 be the | interior zeros of

th,)”_’tk“. For eachi € [[1, /]|, we have
Os;:
S0, jelLkl
atj

Proof. As the casd = 1 has already been treated, we suppose ithat[[2, k — 1]|.
DiﬁerentiatingNL(” (si) = 0 with respect ta;, we obtain

0
0si (1+1) 0N,
— X N i)+ = i) =0
atj M (52) alj (52)




S. Foucart / Journal of Approximation Theory 135 (2005) 1-21 9

. - oN{? , o
SlnceNL(Hl)(si)w(—l)’, it is enough to show tha(ij’) (s))~(=1)I*1L, or, in view of

lj
(4), that
NP s (=1
Writing (3) for/ andx = s; and for/ — 1 andx = s;, we obtain
k+1-=DND @) = i —tHNTVs),
(i —tHN (s) = (k+2= DN D) = e+ DN Visy),
Thus,
(i = 12N = k+ 10 [k + 2= DN D) = e+ DN D]

Let us suppose that = ¢;. It is then clear that # k — 1, and we can write (3) for
[+1andx = s; to obtainfT‘iNt(f+1)(si) = NL(”l)(si). As N;l+1)(s,~)m(—l)i, we have the
desired resuINl(_fH)(s,-)m(—l){. We can therefore assume that- ¢;.

Inthis case, \;ve canalsoassumethat g;.Indeed, ifs; = a;, thenNt(f) (s;) = 0,and (3)
for  andx = s; would give(s; — ;) N "V (s;) = 0, wheren (" (s;) - N e #0,
so we would have; = ¢;.

As s; # tj, in order to prove thaWt(_fH)(si)m(—l)i, we just have to prove that

[k +2= DNV (s = (e + DN )]~
SinceN,fl_l) (si)~(—1)"*1 theresultis clear Wt(_f._l)(si)m(—l)i. Hence we assume that
N;f._l)(s,-)m(—l)”l. This implies thats; € [{;_1,{;]. Indeed, if for example

si < {i_q, thens; < o, becausefvt(jl._l)m(—l)" on ({;_», {;_1), and Lemma 7 yields
si < zi—1, which is absurd. B

Now, noting that (3) fof—1andx = o; implies(k+2—l)Nt(jl.71)(a,-) = (k+1)NL(l’l)(a,»),
we get B

(+2=DING Pl < k+2=DIN] e, 1.0
= (k+2-DINS Vo)l = G+ DIN V(@)
< K+ DIN P lisoziigzn = k+DIN' Vsl

Therefore[(k +2- DN V) — ke + 1)N;’—1>(s,~)] = NV (sp)e(=1y. O

4. A reminder on ECT-spaces

To formulate the subsequent results, we have to recall a few facts about extended complete
Chebyshev spaces and to fix the notations. This is the purpose of this section. Its content
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is all very standard, and the reader is referrefl@], for example, should more details be
needed.

An (n + 1)-dimensional subspaadg of C*(I), I interval, is said to be an extended
Chebyshev space (ET-space) if any non-zero functichiias no more thamzeros counting
multiplicity. The spaces is an ET-space if and only if it admits a basg, . . ., g») which
is an extended Chebyshev system (ET-system), that is, for any pg#ts - <z, in I,

g9m>u.#Wm
5(80 g”):: : : > 0, (6)
o ... Iy (d) (d;
tn) .o g ()
the occurrence sequengef ¢ being defined byl; := max{j : t,_; = --- = ;}.
The systentgo, ..., g») of elements of” (1) is said to be an extended complete Cheby-
shev system (ECT-system) (o, . .., gn) iS an ET-system for any: € [1, n]], and an

(n 4+ 1)-dimensional subspace of C" (1) is said to be an extended complete Chebyshev
space (ECT-space) if it admits a ba&gs, . . ., g,) which is an ECT-system.

If (go,...,gn) is an ECT-system, given points< --- <1, in I, there exists a unique
w € spango, ..., g&») Whose coordinate og, is 1 and which satisfies
w9 (1) = 0, di=max{j:ti_j=---=t}, ielln].
It is denotednso:-8n(e; 11, ..., 1), @and is given by
80 cee 8n—1 8n
d d d
%Wm.ugymvgwm>
(d,,) W ()
(tn) ... (t ) (tn)
OO (a1, 1) = (—1) S n(d) e 'Zd ) YR )
! (tl) e &g 11(t1)
dy U
<%)n.¢hm

According to (6), we easily read the sign pattermuf:-8(e; t1, ..., ty).
Given weight functionsuo, . .., w, such thaw; € C"~(I) andw,; > 0 and given a point
t € I, we now introduce generalized powers, following the notations used by Lyche [6]. We
start by defining inductively the functiors, (e, 1) = Z,, (e, t, w1, ..., wy), m € [0, n]l,
by

Zo(e, 1) :=1,
Zm(% ta wla MR ] wm) = / wl(x)Im—l(x» t5 w29 MR wm) d-x
t
Using integration by parts, it is easily shown by induction that

Tn(x,t) = (=1)" Ly (1, x). (8)
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We then seti,, (o, £, wo, . . ., W) := wo(e)Ly (e, t, w1, ..., wy), thatis

uo(x, t, wo) = wo(x),

X
ui(x,t, wo, w1)=wo(x)/ wa(x1) dxa,
I3

' X Xn—1
up(x,t, wo,-..,wn)=wo(x)/ wl(dX1)-~'/ Wy (Xp) dxy . .. dx1.
t t

For exampley,, (x,7,1,1,2,...,m) = (x — t)™.
The system(ug(e, ¢, wo), ..., uy(e, t, wo, ..., wy,)) IS an ECT-system, and we write
ECT(wo, ..., w,) for the space it spans, as it indeed is independent. dn fact, any

(n 4+ 1)-dimensional ECT-space admits such a representation. In this context, the succes-
sive differentiations are to be replaced by the more appropriate ones,

° 1
Lwo =D w—o , le,wo = w_leO’
[ ] L] 1
Lw,,_l,...,wo =D W1 o---oD w_O , Dw,, ..... wo — w_an,,_l,...,woa

so thatZL,,,(ECT(wo, ..., w,)) is an ECT-space, namely itis EC1, ..., w,).

5. Monotonicity property in ECT-spaces

The Markov interlacing property in ECT-spaces is not new, se§ld.d¢flere is yet another
proof of it, or rather, of the monotonicity property. It is particularly suited to ECT-spaces
and we present it for the sole reason that we like it.

LetECT(wp, ..., w,) bean ECT-space dhandletus s€luo, ..., u,) := (ug(e, t, wo),

e up(e, t,wo, ..., wy,)) forsomer € I. Giveny < --- < t,in I, letw stand here for
O,y (0 1y ooy By) 1= @O (o5 11, L 1),
We definer; to be the zero of,,,(w) € ECT(wy, ..., w,) which belongs to the interval

(ti7 ti+l)! i € [[17 n— 1]]

Proposition 8. For eachi € [1, n — 1], we have
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Proof. Dividing by wo, we can without loss of generality replaeg by 1 andL,,, by the
usual differentiation. We note thatis proportional to

uo . U
uo(t1) ... up(t1)
= ) . , thus we have
uo(tn) ... uy(ty)
ué(‘ci) e M;(‘Ei)
, uo(r)) ... un(r1)
=] . .| =0 9)
uo(tn) ... up(ty)

Differentiating f'(z;) = 0 with respect ta; leads to

67:,» "o é’f’ N
gjxf(fl)‘l‘(a )(Tz)—o

J

Note thatf (t;)~(—1), so thatf” (t;)«~(—1)*1, hence it is enough to show that

ug(t)  ui(r) oo up(t)

<6f/>(r,)— uo(tj-1) u1(j-1) ... unllj=1) | gy

atj - ub(tj) M&(tj) - u;l(tj)
uo(tjve) ui(tjyr) ... up(tjy1)
Let us introduce
ug(ty)  uwi(r) ... up(t)
_|uo(j—1) wi(tj—1) ... up(tj-1)
g = o i1 - " € ECT(wo, ..., wy,),
uo(tj+1) u1(tj+1) ... up(tjy1)

sothat(%) (t))=g'(t;). Wehave g()=0, ..., g(t;—1)=0, g(t;+1)=0, ..., g(t,) = 0,
and in additiong(z;) = 0, in view of (9). Thereforeg = ¢ f for some constant.
Using the fact that(uo,...,u,) is an ECT-system, interchanging the rows yield
g(t)~(=1)/. Now, since f(t;)~(—1), we obtain c~(—1)*/. Hence, we get
g'(tj) = c f'(tj)~(=1)*/(=1)/ = (=1)', which concludes the proof.(]
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6. Generalized divided differences

Before turning our attention to the zeros of the derivatives of Chebyshevian B-splines,
we need to define these Chebyshevian B-splines. A prerequisite is the introduction of the
generalized divided differences, which is carried out in this section. Propo&itias of
particular importance for our purpose and seems to be new.

For an(n + 1)-dimensional ECT-space ah for points#< --- <t, in I and for a

differentiable enough functiofi, we write onG,...,tn (f) for the interpolator off atr, ..., t,
in G, i.e. the unique element @f agreeing withf atr, ..., t,.
Definition 9. The divided difference of a functiofi at the pointsy, .. ., t, with respect to
the weight functionsu, . . ., w, is defined (independently anc I) by
[1;)00 'f”}f := coordinate ofP,EE‘T_(;”O"“’w”)(f) ONuy (e, t, wo, ..., Wy).
. e n )

Givent = (fp < -+ < t,), let t,; represent the sequencdrom whichz; has been
removed, and,; ; the sequencefrom whichy; andz; have been removed. The identity

Wp

P[ECT(wo,...,w,,)(f) _ PIECT(wo,.. | X o
n

L i

S Wph—1) wo
Wﬂ+[m

is readily obtained, and provides the recurrence relation for divided differences. This can
be found in[9], expressed a little differently.

Proposition 10. Forfg < - -+ < t, inland0<i < j <n, we definex = o, % ;" (i, j) by
Wyy,...,wp (o; L\]) — Wyy,...,wy (o; L\l) = 0 X Wyy,..., w,,_l('§ L\i,j)'
The constant is positive and we have
wo ... Wy,
o ... I
Wo ... ..o e .o Wpoa| fwoo ... .l S /O o |
o ... ti—1 tiya ... I o ... tj—1 ftjy1 ... h

o

Proof. To simplify the notations, we omit to write the weight functiang. The previous
identity used twice gives

P(f)= Pg\”(f) + [Z\j]f x (e ty; ;) + (L] f x w(e: 1y ;)
=P, () + [0y f x o1y )+ f x o 1)
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By subtraction, we get
([00]f = [1,17) x o 1 =101f x (06 1) = 0si 1))
=[lf x aw(ei 1y ;).

sothat[t]f = 2 ([L\i]f - [E\j]f>, which is the required result.

o
The positiveness af is obtained by taking the valueszatof the functions defining. [

In the traditional polynomial case, withg = 1, w; = 1, ..., w, = n, one easily finds

octlolz,”(z j) =tj — t;. Hence we recover the usual definition of divided differences.

Finally, the following result is crucial in our further considerations.
Proposition 11. For g < --- < t, in I, we havefor anyj € [0, n],
i wo ... Wy iy WO vr e e . Wpt
0t to ... I, fo ... tj tj ... ty ’
where

/ L.
‘8 _ ‘BWOa'-wwnJrl(j) . ww0,~‘.,wn+l(t] ’ L)
= Prg,....t = ;
0 Wy, ..., w, (tjv L\j)

Proof. We omit to write the weight functions,, here as well. Foe small enough, with

t:=(to,...,t,) andze(e) ;== (fo, ..., t; +¢,..., 1), we have
1
g([to s tjte ot =[0 ot o 1])
o
:g[l‘o N TR T TR A

wherew(e; 1) — w(e; £(g)) = o X W(e; L\j)- Thus,

o _ —oine) o'

e ea)(tj;g\j) s—>0w(t.,';g\j)

The latter limit is obtained using (7). The conclusion now follows from the fact that the
generalized divided difference depends continuously on the knots, which was shown by
Mihlbach [9]. O

,,,,,

7. Chebyshevian B-splines

We recall some properties of Chebyshevian B-splines that are to play a major role in the
last section. We make the simplifying assumption that eaghs of classC*.
Wp+1 ... WO ]

. o ...
,,,,, wnsa (). Indeed, if Dy, w, 1 (f) = Dug,...w,.1(g), then

The divided difference (note the reversed order of thg's)

depends only onD,,
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f —g € ECT(wpi1. ..., w1), SO that[w”;rl - 1] (f —g) = 0. Therefore we

can define a continuous linear functiodadn C([7o, ,,4-1]) such that

|:wn—i-l wo i|f:;V(Dwo ’’’’’ le—l(f)).

o ... iqa
Wp+1 - _
One can prove th ; L f = Duy,...w,.1 () (@) for somer e [1o, ty41],
0 n+1

implying that/ is a positive Iinear functional of norm 1 @l([z, t,+1]). We then expect
the representation

In+1
|:wn+l cee W ]f:/ Doy le(f)(;)M () di
I

10 R N | o

..........

This is the Peano representation of the divided difference. The choice

0 on(—oo, x)
+ ) )
=u, (e, X, Wy41,...,W1) :=
= nil v { un(e, X, Wptt, ..., w1) ON[x,+00)
forwhich Ly, ... w,.,(f) = éx, leads to
WO, eeen W, o Wp+41 wo +
M”70 () = wo(x) X |: o ... tn—i—li| u, (o, X, Wy, ..., W1).

This identity is taken to be the definition of the Chebyshevian B-spling at. , 7,11 with
respect towo, ..., w,, and the Peano representation can now be derived from there. The
B-spline M, ’.t:;',’lﬁ’i is positive on(ro, t,41) and vanishes elsewhere. For< --- < f,41,

it is of classC”~1 and its pieces on each intenv@a/, ti+1) are (restrictions of) elements
of ECT(wo, ..., wy,). This explains the reversed order of thg,’s and the use of the
differentiationL .

One easily get, with the help of (8),
Lo (M%7 7" (x)

----- Iny1

ntl --- WO | 4
= —w1(x) x u JX, Whad, .., W2). 10
1(x) [ o .. tn+li| a_1(e n+1 2) (10)

Then the recurrence relation for divided differences implies the differentiation formula
Lwo (N tn+1) (x) = wl ..... wn (x) — ’mt’n+1(x)
WhereN = ot 00,n + 1) x M

l +1 thyr N0 DS o, ln+1

.....

Applications of the differentiation formula ¢ 1 times) and of Descartes’ rule of sign

on the one hand, and application of Rolle’s theorem on the other, yields the fact that
Luy....wo (M}S’fj;',ﬁ’i) possesses exactly- 1 interior zeros, where it changes sign.

Remark 12. Some particular attention should be devoted to the interesting case of the B-

splineM;; ., . = M ,,,,, ,M, which is a function of clas€”~1, positive on(to, t,+1),
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vanishing elsewhere, and such thatitls (usual) derivative is, on each intenval, ;1 1), a
multiple of w with sign(—=1)'. Givenr= (g < --- < t,41), With w; denoting the monic
polynomial of degree vanishing aty, ..., t,, it would be interesting to know if one can
choosew so that thel zeros of(M”)® coincide with thel zeros ofw!" . This would
confirm the conjecture of Scherer and Shadrin mentioned in the introduction, and would
in turn provide the bound for the B-spline basis condition number conjectured by de Boor.
Let us note that the cases of small values ofveal thatw cannot be chosen independently
ont.

8. Interlacing property for Chebyshevian B-splines

In this section we finally state and prove the monotonicity property and the interlacing
property for Chebyshevian B-splines and the zeros of their appropriate derivatives.
Let us first emphasize two formulae which are essential in our approach.

Formulae 13.
wQ, .., w,
Luy,..owo (M2 2"%) (x)
I1+1 Wyl ... WO | 4

= (D" w1(x) |: ';0 Lt ] U, g q(e X, W1, oo, Wi42), (12)
aMtwo,...,w,,

Oseeesln+1 o Wyl W1, + wW_1,WQ,..., W

o = = _ﬁto’,l“.,tn_*_l (J) X Ly_y (Mto,....t_/-,tj,...,;ln+1> . (12)

J

Proof. Formula (11) is obtained in the same way as (10). Formula (12) is obtained from
Proposition 11. [

Let us now establish a preparatory lemma.

Lemma 14. For all n > 2, there holds

Property A,. For any/ € [0,n — 2], if s1 < --- < s;41 denote the zeros of
Ly, ...wo (Mzg 70", ), we have

Lougoans (MEE27) (850 = Loy (MR ) (510~ (=17

»»»»»»»»»» Tn+1

or equivalently

Wp+1 ... W1 +
u o, Si, Wytl, -, W
[ 0 T, :| n—l—l( i» Wn+1l 1+2)
Wp41 ... W1 + i+l+1
= u o, S, Wyl ..o W (=1 .
|: 71 o Tn+1] n—l—l( i» Wn41 1+2)(=1)

Proof. The equalityL,,..w, (M7 5") (si) = Luy

,,,,,

W1,y W, . .
wy (M720)) (sq) is simply a

) (s;) = 0. The other equality is now derived with the
wi (Mzg 72 (si) has to be determined.

.....

----- T+l

help of (11). Thus dﬁly the sign df,,

.....



S. Foucart / Journal of Approximation Theory 135 (2005) 1-21 17

Let us note that ifA,,_1 holds, then so does the following property.

Property B,. Foranym € [1,n — 2], if f is an element of EC(w,, ..., w1) agreeing

With wf (e, 2, Wy, ..., wy—m) at 7o, ..., 7, and if £(f) denotes the coordinate gf on
un—l('» Ty, Why ovvy wl), then
[f—uf(e.z,wp, ..., w”_’")]\ﬁmm) A(F) (=LY

Indeed, form € [[1,n — 2]|, let us consider such a functiofi and let us suppose that
[f —u(e, 2, wn, ..., wa—m)] has at least + 2 zeros counting multiplicity. A repeated
application of Rolle’s theorem implies that

Dwn_m ..... wy [f - M,J,Z(', 2, Wpy ovvy wn—m)] = Dw,,_m,...,w,, (f)— Ma—(% 2)

has at least + 2 — m zeros, and then, applying Rolle’s theorem once more, we see
that Ly, , ...w,(f) vanishes at least — m times. ButL,, , . ., (f) is an element

of ECT(wy—m—1, ..., w1), thereforeL,, . . ., (f) = 0. The latter implies thayf <
ECT(wy, ..., wp—m) € ECT(wy, ..., wy). Since f agrees withs,! (e, z, wy, . .., Wy—m)

atty, ..., 1,, it follows that

w, ... W1 +
u' (e, 2, Wy, ..., Wy—m) = 0.
|:7:1 rni| m( " n—m)

Consequently, according 0,1, we have L, ,, , wo (M 2" ) (z) # 0, i.e.

[fo - f:}u;(.,z, W+ ey W) 2 O.
But this contradicts the fact thgt € ECT(w,,, ..., w1).
We conclude thaf f — u;} (s, 2, wy, ..., wa—m)| vanishes only aty, ..., 7,, where it
changes sign. Far — —oo, one hasf (x) — u,h (x, 2, Wy, ..., Waepw) = fFxX)AL(f)
(—=1)"~1, hence the sign pattern given .

We now proceed with the proof of the lemma.
Firstly, we remark that the assertion &), is clear for/ = 0. Indeed, ifs is the zero of
Lug (M2 2), thens € (1, 7,), and consequently/ 72" (s) > 0.

Let us now showA,, by induction orm > 2.

According to the remark we have just made, the asseripis true.

Let us then suppose that,_; holds for some: > 3, and let us prove that, holds as
well.

Forl e [1,n— 2], let

51 < -+ < 5141 bethe zeros ofL,, .. wy, (Mé’g?jj;;’ffjl) .

We will have showm,, as soon as we prove thate (z; -1, z;), € [1,1+ 1]
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We consider
fi € ECT(wp41, ..., w1) agreeing Witm:_l_l(% Zis Wptds « - v Wi42)
atty, ..., Tn+1,
gi € ECT(w;41, ..., w1) agreeing Withzjlr_l_l(-, Ziy Wygds - - -5 W42)
atto, ..., T,.
Let £(f;) denote the coordinate gf onu, (e, 1, w41, . .., W1).
Let also¢(g;) denote the coordinate @ onu,_1(e, t, w,11, ..., w2). In fact, we have

gi € ECT(wy41, ..., w2), as the coordinate qf; onu, (e, 7, wy41, ..., w1) IS equal to
zero, in view ofL.,, . w, (M7= 75" (zi) = 0. According toA,—1, we have

.....

0(gi) = [ ;rl r:] wh | (e zi wagt, .o w2 (=D i e [

Let us now remark that

gi — fi = —L(fi) X O, q,..owy (& T2 - o0, Tn).
Therefore,

(i = fi)(Tn41) = —E(fi) X Ou,pq,eowr (Tnt 13 T2, -5 Ta) o — (i)

=gi(Th+1) — u;:__l_l(fn+l, Zis Wntlds + - -5 Wi42) > L(gi).
By

We conclude that( f;j)—~ — £(gi)~(—1)++1 i € [1,]. In other words,

Wp4+1 ... w1 + i1
u » Ziy W sy, W, (=1 ,
|: L. r,,+1i| n—1-1(% Zi> Wnt1 1+2)~(—=1)
that is
L (Mw1 ..... wy ) (Z')V‘(—l)i—"_l i e[1,1]
Wi, W1 T1eees Tn41 i ’ k) .

This implies the existence of € (z;_1, z;) such that

Lwl,...,wl (M‘zrl())lpu)rl:") (Vi) = sz ..... w1 (M;Ull '''' n ) (Vi),

---------- Tn+1

Lw,,_i.,w()( B ) r) =0, iel21].

,,,,,

.....

hence the existence of € (11, z1) < (zo, z1) such that

Lw;,‘..,wo <M.Z.lé?”w" ) (r)) = 0.

- Tn+1
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Similarly, we get the existence of;1 € (z;, z;+1) such that
Lw/,...,wo <M},;léo """ Wi ) (rH—l) =0.

Having found! + 1 zeros ofL.,.... w, (Mo %0t ), these zeros are just, ..., s;41. On
account ofs; € (z;_1, z;), we conclude thati,, holds.

Our inductive proof is now complete.[]

Remark 15. The observation made in Remafkvas central to our proof of the monotonic-
ity property for polynomial B-splines. It also simplifies the arguments we have just given
here, as follow.

Proof of Lemma 14 for polynomial B-splines. Lets; be theith zero ofMif)fl,,)rnH. Then
the polynomialp interpolating(s — s;)"' " atro, ..., .11 is of degreer, notn + 1. Its

leading coefficient isi/lf(ll)mfm (s;)- Asin (2), the polynomiale —s;) x p, of degree: + 1,

interpolateqe — s,-)'_;fl atto, ..., T,+1. Its leading coefficient iﬁ/lf(é)mfn+1 (s;) and is also
the leading coefficient op. Therefore, one has

M) 6D = MY o )-(=D O

Tl T4l T0s+-sTn+1

We are now ready to establish the monotonicity property for Chebyshevian B-splines.

Theorem 3. For [ € [0,k — 2], lets; < --- < s;41 be the(l + 1) interior zeros of
Luy...wo (M,‘gfij;'t’kf’;). For eachi € [1,7+ 1], we have

a .

Eio, jellkl

alj
Proof. Differentiating D, ;..o (Mg ;%) (si) = O with respect ta;, we obtain

dsi ODuy... Mg s

— X Luy,q,...uo (M;golsz’i) (s7) + —rt wo (M, ,tk+l) (s1) = O.

6t.,~ al‘j
SinceLu,,y.....wo (Mg 750%) (s;)~(—1)!, it is enough to show that

5Dw ’’’’ » Mwo,wk) (3Mw0_’_:"’wk ‘

I+1 gt( 10rrfs 1 (5:) = Duys,..uo % (s))~(—1)+L
J J
or, in view of (12) and (11), that
W41 +++ oo .. WO W-1 + ) A i+l
[ o ... 1t ... tk+1]uk"‘1(°’ Sis Wl -+ o W) (D
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We consider

f € ECT(wgy1, ..., w_1) agreeing With/lz_,l,l(', Siy Wkt - - - » Wi42)

atro, ...t tj, ..., k1,
g € ECT(wi41, ..., wo) agreeing withe;” , ; (e, 57, Wi, - .., Wi42)
atro, ..., tkt1-

Let £(f) denote the coordinate gf onuy2(e, t, wit1, ..., w—1). We need to show that

L~ (—1)
Let also¢(g) denote the coordinate qf on wu (e, t, w1, ..., w1). INn fact, we have
g€ !ECT(wk+1, ..., w1), which is a consequence &f,, ., (M}é’f’_j;',;{"ﬁ) (s;) = 0. Ac-
cording toAy, we have

w e w ;
Ly =| Yol e st Wit - i) A (=D)L
1 R e |

Let us now remark that

f=8g=Lf) X Oupy,w (5 t0, .o k1)
Therefore,
S/ = 8/ =€) X Oy (15 100 )LL)
=— (g —ul, 1o 50, wit1, -, wis2)) (1)) o U1

By

We conclude that(f)— — £(g)~(=1)*. O

The interlacing property for Chebyshevian B-splines is deduced from the monotonicity
property in exactly the same way as in Sectioiits proof is therefore omitted.

Theorem 4. Letl € [0,k — 2]. IftheknotsD =1 <11 < -+ < 1 < fr41 = 1linterlace
withtheknotd =1) <] <--- <1, < t,QH = 1,thatis

n<n<e<ty< - <p <y,

. , . . wo, ..., Wk
and ifs; < 1/ atleast oncethen the interior zeros; < - -+ < 541 0f Ly ug (Mro,...,zk+1)

strictly interlace with the interior zeros) < --- < s/, ; Of Ly, ug (Mt'zo"“t;i“”;), that is
vl

51 <81 <82<Sp<--- <841 <S8,
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